Wednesday 4 November 2015

PLD'S

programmable logic device (PLD) is an electronic component used to build reconfigurable digital circuits. Unlike a logic gate, which has a fixed function, a PLD has an undefined function at the time of manufacture. Before the PLD can be used in a circuit it must be programmed, that is, reconfigured.
             
                      

Early programmable logic

In 1969, Motorola offered the XC157, a mask-programmed gate array with 12 gates and 30 uncommitted input/output pins.[1]
In 1970, Texas Instruments developed a mask-programmable IC based on the IBM read-only associative memory or ROAM. This device, the TMS2000, was programmed by altering the metal layer during the production of the IC. The TMS2000 had up to 17 inputs and 18 outputs with 8 JK flip flop for memory. TI coined the term programmable logic array for this device.[2]
In 1971, General Electric Company (GE) was developing a programmable logic device based on the new PROM technology. This experimental device improved on IBM's ROAM by allowing multilevel logic. Intel had just introduced the floating-gate UV erasable PROM so the researcher at GE incorporated that technology. The GE device was the first erasable PLD ever developed, predating the Altera EPLD by over a decade. GE obtained several early patents on programmable logic devices.[3][4][5]
In 1973 National Semiconductor introduced a mask-programmable PLA device (DM7575) with 14 inputs and 8 outputs with no memory registers. This was more popular than the TI part but cost of making the metal mask limited its use. The device is significant because it was the basis for the field programmable logic array produced by Signetics in 1975, the 82S100. (Intersil actually beat Signetics to market but poor yield doomed their part.)[6][7]
In 1974 GE entered into an agreement with Monolithic Memories to develop a mask- programmable logic device incorporating the GE innovations. The device was named the 'Programmable Associative Logic Array' or PALA. The MMI 5760 was completed in 1976 and could implement multilevel or sequential circuits of over 100 gates. The device was supported by a GE design environment where Boolean equations would be converted to mask patterns for configuring the device. The part was never brought to market.[8]

PLA

In 1970, Texas Instruments developed a mask-programmable IC based on the IBM read-only associative memory or ROAM. This device, the TMS2000, was programmed by altering the metal layer during the production of the IC. The TMS2000 had up to 17 inputs and 18 outputs with 8 JK flip flop for memory. TI coined the term programmable logic array for this device.[2]
A programmable logic array (PLA) has a programmable AND gate array, which links to a programmable OR gate array, which can then be conditionally complemented to produce an output.

PAL { Programmable array logic}

PAL devices have arrays of transistor cells arranged in a "fixed-OR, programmable-AND" plane used to implement "sum-of-products" binary logic equations for each of the outputs in terms of the inputs and either synchronous or asynchronous feedback from the outputs.
MMI introduced a breakthrough device in 1978, the programmable array logic or PAL. The architecture was simpler than that of Signetics FPLA because it omitted the programmable OR array. This made the parts faster, smaller and cheaper. They were available in 20 pin 300 mil DIP packages while the FPLAs came in 28 pin 600 mil packages. The PAL Handbook demystified the design process. The PALASM design software (PAL assembler) converted the engineers' Boolean equations into the fuse pattern required to program the part. The PAL devices were soon second-sourced by National Semiconductor, Texas Instruments and AMD.
After MMI succeeded with the 20-pin PAL parts, AMD introduced the 24-pin 22V10 PAL with additional features. After buying out MMI (1987), AMD spun off a consolidated operation as Vantis, and that business was acquired by Lattice Semiconductor in 1999.

GALs

Lattice GAL 16V8 and 20V8
An improvement on the PAL was the generic array logic device, or GAL, invented by Lattice Semiconductor in 1985. This device has the same logical properties as the PAL but can be erased and reprogrammed. The GAL is very useful in the prototyping stage of a design, when any bugs in the logic can be corrected by reprogramming. GALs are programmed and reprogrammed using a PAL programmer, or by using the in-circuit programming technique on supporting chips.
Lattice GALs combine CMOS and electrically erasable (E2) floating gate technology for a high-speed, low-power logic device.
A similar device called a PEEL (programmable electrically erasable logic) was introduced by the International CMOS Technology (ICT) corporation.

CPLDs

PALs and GALs are available only in small sizes, equivalent to a few hundred logic gates. For bigger logic circuits, complex PLDs orCPLDs can be used. These contain the equivalent of several PALs linked by programmable interconnections, all in one integrated circuit. CPLDs can replace thousands, or even hundreds of thousands, of logic gates.
Some CPLDs are programmed using a PAL programmer, but this method becomes inconvenient for devices with hundreds of pins. A second method of programming is to solder the device to its printed circuit board, then feed it with a serial data stream from a personal computer. The CPLD contains a circuit that decodes the data stream and configures the CPLD to perform its specified logic function. Some manufacturers (including Altera and Microsemi) use JTAG to program CPLD's in-circuit from .JAM files.

FPGAs


While PALs were busy developing into GALs and CPLDs (all discussed above), a separate stream of development was happening. This type of device is based on gate arraytechnology and is called the field-programmable gate array (FPGA). Early examples of FPGAs are the 82s100 array, and 82S105 sequencer, by Signetics, introduced in the late 1970s. The 82S100 was an array of AND terms. The 82S105 also had flip flop functions.
FPGAs use a grid of logic gates, and once stored, the data doesn't change, similar to that of an ordinary gate array. The term "field-programmable" means the device is programmed by the customer, not the manufacturer.
FPGAs are usually programmed after being soldered down to the circuit board, in a manner similar to that of larger CPLDs. In most larger FPGAs, the configuration is volatile and must be re-loaded into the device whenever power is applied or different functionality is required. Configuration is typically stored in a configuration PROM or EEPROM. EEPROM versions may be in-system programmable (typically via JTAG).
The difference between FPGAs and CPLDs is that FPGAs are internally based on Look-up tables (LUTs) whereas CPLDs form the logic functions with sea-of-gates (e.g. sum of products). CPLDs are meant for simpler designs while FPGAs are meant for more complex designs. In general, CPLDs are a good choice for wide combinational logicapplications, whereas FPGAs are more suitable for large state machines (i.e. microprocessors)

No comments:

Post a Comment